Preview

Radiatsionnaya Gygiena = Radiation Hygiene

Advanced search

Conversion from the frequency of chromosome translocations in T-lymphocytes to the bone marrow dose in the long-term period after internal 89,90 Sr exposure

https://doi.org/10.21514/1998-426X-2024-17-2-53-63

Abstract

Cytogenetic Fluorescence In Situ Hybridization studies, that allow assessing the frequency of stable chromosome  aberrations  in  circulating  T  lymphocytes,  are  commonly  used  in  retrospective  dosimetry  in  cases of uniform whole-body exposure. In the event of 89,90Sr exposure, interpretation of cytogenetic data is challenging,  especially  if  blood  sampling  occurs  long  after  the  start  of  exposure.  The  weighted  average  dose  to T-lymphocytes at the time of donor blood sampling in the long-term period after exposure to 89,90Sr does not coincide  with  the  red  bone  marrow  dose.  Previously,  we  developed  a  model  that  allows  us  to  estimate  the weighted average doses to T-lymphocytes upon 89,90Sr ingress into the body of people belonging to various age groups. In this study, the modeling results were used to estimate the conversion factors from the frequency of translocations to the red bone marrow dose, which is important for assessing radiobiological effects associated with hematological diseases. The objective of our study is to estimate numerically the conversion factors (Brbm) from the dose to lymphocytes to the dose to red bone marrow for various scenarios of 89,90Sr ingestion depending on age, sex, and time after the start of exposure. The following scenarios are considered: single, uniform chronic for six months, uniform chronic for 1-5 years, non-uniform intake for 5 years (simulates the dynamics of intake in the Techa riverside settlements in 1950-1954). As a result, it has been found that the Brbm values significantly depend on the age at the time of 89,90Sr intake. The older the person is at the start of exposure, the more the cytogenetic dose differs (it is significantly lower) from the dose to the red bone marrow. We can say that the cytogenetic dose corresponds to the red bone marrow dose only in newborns and infants. This is due to the age-related dynamics of T-cell populations. Sex does not have a significant effect on Brbm. The effect of the 89,90Sr intake duration on Brbm is the most pronounced for 15-year-old adolescents. For them, the difference in Brbm values for a single and chronic 5-year ingress reaches 13%. Non-uniform intake of 90Sr over several years does not have a significant effect on Brbm and can be modelled by a uniform intake of the same duration.

About the Author

E. I. Tolstykh
Urals Research  Center  for Radiation Medicine of  the Federal Medical Biological Agency
Russian Federation

Evgenia  I.  Tolstykh  –  Doctor  of  Biological  Sciences, Leading  Researcher  of  the  Biophysics  laboratory

 Vorovsky str., 68A, Chelyabinsk, 454141



References

1. Nakayama R., Abe Y., Ting V.G.S. et al. Cytogenetic Biodosimetry in Radiation Emergency Medicine: 4. Overview of Cytogenetic Biodosimetry // Radiation Environment and Medicine. 2022. Vol. 11, № 2. P. 91-103. https://doi.org/10.51083/radiatenvironmed.11.2_91

2. МАГАТЭ Использование цитогенетической дозиметрии для обеспечения готовности и реагирования при радиационных аварийных ситуациях. URL : https://www-pub.iaea.org/MTCD/Publications/PDF/EPR_Biodosimetry2011R_web.pdf (Дата обращения: 17.5.2022).

3. Giussani A., Lopez M.A., Romm H. et al. Eurados review of retrospective dosimetry techniques for internal exposures to ionising radiation and their applications // Radiation and Environmental Biophysics. 2020. Vol. 59 , № 3. P. 357-387. doi: 10.1007/s00411-020-00845-y.

4. Tolstykh EI, Degteva MO. Estimation of radiation doses on lymphocytes and their progenitors after ingestion of strontium-89,90. Radiatsionnaya gygiena=Radiation Hygiene. 2022;15(3): 82-91. https://doi.org/10.21514/1998-426X-2022-15-3-82-91.

5. Vozilova A.V., Shagina N.B., Degteva M.O. et al. FISH analysis of translocations induced by chronic exposure to Sr radioisotopes: second set of analysis of the Techa River Cohort // Radiation Protection Dosimetry. 2014. Vol. 159, № 1-4. P. 34-37. doi: 10.1093/rpd/ncu131. Epub 2014 Apr 17. PMID: 24743760.

6. Degteva M.O., Shishkina E.A., Tolstykh E.I. et al. Application of the EPR and FISH Methods to Dose Reconstruction for People Exposed in the Techa River Area // Radiation biology. Radioecology. 2017. Vol. 57, № 1. P. 30-41. (English, Russian). PMID: 30698929.

7. ISO 20046. 2019. Radiological protection – Performance criteria for laboratories using Fluorescence In Situ Hybridization (FISH) translocation assay for assessment of exposure to ionizing radiation. URL: https://www.iso.org/standard/66892.html ( Дата обращения: 27.12.2022)

8. Sigurdson A.J., Ha M., Hauptmann M., et al. International study of factors affecting human chromosome translocations // Mutation Research. 2008. Vol. 652, № 2. P.112–121. doi: 10.1016/j.mrgentox.2008.01.005

9. Goh V.S.T, Fujishima Y., Abe Y. et al. Construction of fluorescence in situ hybridization (FISH) translocation dose-response calibration curve with multiple donor data sets using R, based on ISO 20046:2019 recommendations // International Journal of Radiation Biology. 2019. Vol. 95, № 12. P.1668-1684. doi: 10.1080/09553002.2019.1664788.

10. Nugis VYu, Snigiryova GP, Lomonosova EE, Kozlova M, Nikitinal V. Three-color FISH method: dose–effect curves for translocations in peripheral blood lymphocyte cultures after gamma-irradiation in vitro. Medical Radiology and Radiation Safety . 2020;65(5): 12-20 (In Russian). DOI: 10.12737/1024-6177-2020-65-5-12-20

11. Degteva M.O, Tolstykh E.I., Shishkina E. et al. Stochastic parametric skeletal dosimetry model for humans: General approach and application to active marrow exposure from bone-seeking beta-particle emitters // PLoS One. 2021. Vol. 16, № 10 e0257605. doi: 10.1371/journal.pone.0257605.

12. Shishkina E.A., Timofeev Y.S., Volchkova A.Y. et al. Trabecula: A Random Generator of Computational Phantoms for Bone Marrow Dosimetry // Health Physics. 2020. Vol. 118, № 1. P. 53-59. doi: 10.1097/HP.0000000000001127.

13. Shagina N.B., Tolstykh E.I., Degteva M.O. et al. Age and gender specific biokinetic model for strontium in humans // Journal of Radiological Protection. 2015. Vol. 35, № 1. P. 87-127. doi: 10.1088/0952-4746/35/1/87.

14. Tolstykh E.I., Degteva M.O., Peremyslova L.M. et al. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: strontium-90 // Health Physics. 2011. Vol. 101, № 1. P. 28-47. doi: 10.1097/HP.0b013e318206d0ff.

15. Britanova O.V., Shugay M., Merzlyak E.M. et al. Dynamics of individual T cell repertoires: from cord blood to centenarians // Journal of Immunology. 2016. Vol. 196, № 12. P. 5005– 5013. doi 10.4049/jimmunol.1600005.

16. Naumova E.N., Gorski J., Naumo Y.N. Simulation studies for a multistage dynamic process of immune memory response to influenza: experiment in silico // Annales Zoologici Fennici. 2008. Vol. 45. P. 369–384. DOI: 10.5735/086.045.0502.

17. Yoshida K., Cologne J.B., Cordova K. et al., Aging-related changes in human T-cell repertoire over 20 years delineated by deep sequencing of peripheral T-cell receptors // Experimental Gerontology. 2017. Vol. 1, № 96. P. 29–37. doi 10.1016/j.exger.2017.05.015.


Review

For citations:


Tolstykh E.I. Conversion from the frequency of chromosome translocations in T-lymphocytes to the bone marrow dose in the long-term period after internal 89,90 Sr exposure. Radiatsionnaya Gygiena = Radiation Hygiene. 2024;17(2):53-63. (In Russ.) https://doi.org/10.21514/1998-426X-2024-17-2-53-63

Views: 346


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-426X (Print)
ISSN 2409-9082 (Online)