Preview

Radiatsionnaya Gygiena = Radiation Hygiene

Advanced search

Improving the approach to calculating shielding in computed tomography rooms

https://doi.org/10.21514/1998-426X-2024-17-2-64-75

Abstract

The study assessed the acceptability of the currently existing approach to calculating shielding in computed tomography rooms and formulated proposals for its improvement, taking into account the parameters of research in domestic medical practice. It is proposed to use the dose-length product as the main measured parameter in the new approach to calculating shielding. Typical tomograph workload values of dose-length product, typical for examinations in the Russian Federation, were assessed. Using thermoluminescent detectors, the experimental assessment of the distribution of absorbed dose in the air in a computed tomography room was carried out. The experimental results showed that the distribution of of X-ray exposure in the central plane is not isotropic. Due to the attenuation of exposure by the gantry design, “shadow” zones are observed, where  the  absorbed  dose  reduction  in  the  air  reaches  10-13  times  compared  to  its  level  in  the  direction  of couch movement. Based on the results of measurements of the distribution of absorbed dose in air, the relative scatter coefficients were calculated. The workload was determined for 7 tomographs (1 in St. Petersburg and 6 in Moscow). For each tomograph, the average weekly number of head and body examinations and the values    of dose-length product for these areas were assessed, taking into account the number of multiphase examinations. The obtained workload values   turned out to be one or two orders of magnitude higher than those currently used in calculating shielding. Based on the results of the study and literature data, the work proposes a  new  approach  to  calculating  shielding  in  computed  tomography  rooms,  based  on  the  value  of  measured dose-length product during the examination and allowing to take into account the specifics of the operation of the device.

About the Authors

P. S. Druzhinina
Saint-Petersburg  Research Institute of Radiation  Hygiene  after  Professor P.V. Ramzaev, Federal  Service  for  Surveillance of  Consumer Rights Protection and Human Wellbeing
Russian Federation

Polina S. Druzhinina  – junior research fellow, Laboratory of radiation hygiene of medical facilities

Mira Str., 8, Saint-Petersburg, 197101



L. A. Chipiga
Saint-Petersburg  Research Institute of Radiation  Hygiene  after  Professor P.V. Ramzaev, Federal  Service  for  Surveillance of Consumer Rights Protection and Human Wellbeing; A.Granov  Russian  Scientific   Center   of   Radiology and   Surgical  Technologies,  Ministry  of   Healthcare  of   the   Russian Federation; V.   Almazov  National  Medical  Research   Center,  Ministry  of Healthcare of the   Russian  Federation
Russian Federation

Larisa  A.  Chipiga   –  Ph.D.,  research  fellow, Laboratory of  radiation  hygiene  of  medical  facilities; research fellow; docent

Saint-Petersburg



V. Yu. Golikov
Saint-Petersburg  Research Institute of Radiation  Hygiene  after  Professor P.V. Ramzaev, Federal  Service  for  Surveillance of  Consumer Rights Protection and Human Wellbeing
Russian Federation

Vladislav  Yu.  Golikov  –  Senior  Researcher  of  the Medical  Protection  Laboratory

Saint-Petersburg



A. V. Vodovatov
Saint-Petersburg  Research Institute of Radiation  Hygiene  after  Professor P.V. Ramzaev, Federal  Service  for  Surveillance of Consumer Rights Protection and Human Wellbeing; Saint-Petersburg State Pediatric edical University, Ministry of  Healthcare of  the Russian Federation
Russian Federation

Aleksandr  V.  Vodovatov   –  Ph.D.,  Head  of Laboratory; docent

Saint-Petersburg



S. Yu. Bazhin
Saint-Petersburg  Research Institute of Radiation  Hygiene  after  Professor P.V. Ramzaev, Federal  Service  for  Surveillance of  Consumer Rights Protection and Human Wellbeing
Russian Federation

Stepan  Yu.  Bazhin  –  Head  of  radiation  control laboratory  –  senior  researcher

Saint-Petersburg



E. N. Shleenkova
Saint-Petersburg  Research Institute of Radiation  Hygiene  after  Professor P.V. Ramzaev, Federal  Service  for  Surveillance of  Consumer Rights Protection and Human Wellbeing
Russian Federation

Ekaterina  N.  Shleenkova  –  Junior  Researcher, Laboratory  of  radiation  control

Saint-Petersburg



G. V. Berkovich
V. Almazov  National  Medical  Research   Center, Ministry  of   Healthcare  of   the   Russian  Federation
Russian Federation

Gleb  V.  Berkovich  –  Head  of  the  Computed Tomography  department

Saint-Petersburg



I. V. Soldatov
Research  and  Practical  Clinical Centre  of  Diagnostics and  Telemedicine  Technologies of Moscow Healthcare Department
Russian Federation

Ilya V. Soldatov  – Head of the testing laboratory

Moscow



Z. A. Lantukh
Research  and  Practical  Clinical Centre  of  Diagnostics and  Telemedicine  Technologies of Moscow Healthcare Department
Russian Federation

Zoya A. Lantukh  – Head of the Department of Dosimetric Monitoring and Medical Physics

Moscow



K. V. Tolkachev
Research  and  Practical  Clinical Centre  of  Diagnostics and  Telemedicine  Technologies of Moscow Healthcare Department
Russian Federation

Kirill V. Tolkachev – Expert of the department of dosimetric monitoring and medical physics

Moscow



References

1. Druzhinina PS, Romanovich IK, Vodovatov AV, Chipiga LA, Akhmatdinov RR, Bratilova AA , et al. Trends in the development of computed tomography in the Russian Federation in 2011–2021. Radiatsionnaya Gygiena = Radiation Hygiene . 2023;16(3): 101-117. (In Russian) https://doi.org/10.21514/1998-426X-2023-16-3-101-117.

2. Martin CJ. Radiation shielding for diagnostic radiology. Radiation Protection Dosimetry. 2015;165(1-4): 376-81. doi: 10.1093/rpd/ncv040. Epub 2015 Mar 25. PMID: 25813477.

3. Golikov VYu. Critical analysis of the existing approach to the calculation of radiation shielding in X-ray rooms. Radiatsionnaya Gygiena = Radiation Hygiene . 2023;16(3): 13-21. (In Russian) https://doi.org/10.21514/1998-426X-2023-16-3-13-21.

4. NCRP. Report No. 147 – Structural Shielding Design for Medical X-Ray Imaging Facilities. 2004. 194 p.

5. Wallace H, Martin CJ, Sutton DG, Peet D, Williams JR. Establishment of scatter factors for use in shielding calculations and risk assessment for computed tomography facilities. Journal of Radiological Protection . 2012;32(1): 39-50. doi: 10.1088/0952-4746/32/1/39. Epub 2012 Feb 10. PMID: 22327169.

6. Sheleenkova EN. Experimental study of individual thermoluminescent dosemeters performances for measuring the dose equivalents in skin and eye lens. Radiatsionnaya Gygiena = Radiation Hygiene. 2014;7(4): 143-156. (In Russian).

7. Research and production enterprise “DOZA”. Dosimetric thermo-luminescent complex “DOZA-TLD”. Operating manual FVKM.412118.010RE. 2018. 49 p. Available from: https://atomsnab.kz/wp-content/uploads/2020/07/tld_new.pdf (Accessed: 20.03.2024).

8. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array programming with NumPy. Nature. 2020;585: 357–362. https://doi.org/10.1038/s41586-020-2649-2.

9. Druzhinina PS, Chipiga LA, Ryzhov SA, Vodovatov AV, Berkovich GV, Smirnov AV, et al. Proposals for the Russian quality assurance program in computed tomography. Radiatsionnaya Gygiena = Radiation Hygiene . 2021;14(1): 17-33. (In Russian) https://doi.org/10.21514/1998-426X-2021-14-1-17-33

10. Sutton DG, Martin CJ, Williams JR, Peet DJ. Radiation Shielding for Diagnostic Radiology. British Institute of Radiology, 2012. 139 p.

11. Sutton DG, Martin CJ, Peet D, Williams JR. The characterization and transmission of scattered radiation resulting from x-ray beams filtered with zero to 0.99 mm copper. Journal of Radiological Protection . 2012;32(2): 117-29. doi: 10.1088/0952-4746/32/2/117. Epub 2012 May 3. PMID: 22555158.

12. Martin CJ, Sutton DG, Magee J, McVey S, Williams JR, Peet D. Derivation of factors for estimating the scatter of diagnostic x-rays from walls and ceiling slabs. Journal of Radiological Protection . 2012;32(4): 373-96. doi: 10.1088/0952-4746/32/4/373. Epub 2012 Sep 24. PMID: 23006642.

13. Martin CJ, Sutton DG. Practical Radiation Protection in Healthcare. Second edition; 2015. 536 p.

14. Cole JA, Platten DJ. A comparison of shielding calculation methods for multi-slice computed tomography (CT) systems. Journal of Radiological Protection . 2008;28(4): 511-23. doi: 10.1088/0952-4746/28/4/005. Epub 2008 Nov 24. PMID: 19029585.

15. Ciraj-Bjelac O, Arandjic D, Kosutic D. Comparison of different methods for shielding design in computed tomography. Radiation Protection Dosimetry. 2011;147(1-2): 133-6. doi: 10.1093/rpd/ncr287. Epub 2011 Jul 9. PMID: 21743070.

16. Hiroshi W, Takuma U, Yoshinori Sh, Takurou H. Verification study to improve the Japanese-DLP calculation method for shielding in the X-ray CT room. Japanese Journal of Health Physics. 2022;57(2): 87-92.

17. Verdun FR, Aroua A, Trueb PR, Bochud FO. Use of DLP for establishing the shielding of multidetector computed tomography rooms. 2010. 8 p. https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/006/41006643.pdf.


Review

For citations:


Druzhinina P.S., Chipiga L.A., Golikov V.Yu., Vodovatov A.V., Bazhin S.Yu., Shleenkova E.N., Berkovich G.V., Soldatov I.V., Lantukh Z.A., Tolkachev K.V. Improving the approach to calculating shielding in computed tomography rooms. Radiatsionnaya Gygiena = Radiation Hygiene. 2024;17(2):64-75. (In Russ.) https://doi.org/10.21514/1998-426X-2024-17-2-64-75

Views: 437


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-426X (Print)
ISSN 2409-9082 (Online)