Polymorphism of hOGG1 gene and susceptibility to malignant neoplasms in people affected by long-term low dose rate exposure
https://doi.org/10.21514/1998-426X-2024-17-4-55-67
Abstract
In the previous study [1], we showed an increased risk of malignant neoplasms in carriers of the minor allele rs1052133*G of the hOGG1 gene who were affected by chronic radiation exposure at a wide range of doses (up to 3,507 mGy to the red bone marrow) at the Techa River (Southern Urals) contaminated due to the activities of the Mayak Production Association in the 1950s. The objective of the present study was to assess the contribution of radiation factor to the risk of malignant neoplasms development in persons chronically exposed at the Techa River. For this purpose, we analyzed the background level of genetically determined risk in the general population of unexposed people on the basis of meta-analysis of the world literature data on the search for the association of rs1052133 of the hOGG1 gene with the risk of malignant neoplasms development. At the final stage, the results of the meta-analysis were compared with data on exposed people. The study found that unexposed and exposed carriers of the rs1052133*G allele had a comparable increased risk of developing malignant neoplasms, odds ratio 1.20; 95% confidence interval [1.06–1.35], p=0.01 and odds ratio =1.38; 95% confidence interval [1.05–1.83], p=0.023, respectively.
Keywords
About the Authors
M. A. YanishevskayaRussian Federation
Mariya A. Yanishevskaya – Junior Researcher, Laboratory of Molecular and Cellular Radiobiology, Urals Research Center for Radiation Medicine, Federal Medical Biological Agency.
Vorovsky str., 68a, Chelyabinsk, 454076
E. A. Blinova
Russian Federation
Evgenia A. Blinova – Candidate of Biological Sciences, Head of the Laboratory of Molecular Cellular Radiobiology, Urals Research Center for Radiation Medicine, Federal Medical Biological Agency; Assoc. Prof. of the Department of Radiation Biology of the Chelyabinsk State University.
Chelyabinsk
E. A. Shishkina
Russian Federation
Elena A. Shishkina – Doctor of Biological Sciences, Senior Researcher of the Biophysics laboratory, Urals Research Center for Radiation Medicine, Federal Medical Biological Agency, Assoc. Prof. of the Department of Radiation Biology of the Chelyabinsk State University.
Chelyabinsk
A. V. Akleyev
Russian Federation
Alexander V. Akleyev – Doctor of Medical Sciences, Professor, Honoured Science Worker of the Russian Federation, Director of the Urals Research Center for Radiation Medicine, Federal Medical Biological Agency; Head of the Department of Radiation Biology of the Chelyabinsk State University.
Chelyabinsk
References
1. Yanishevskaya MA, Blinova EA, Korechenkova AV, Akleyev AV. Association of the rs1052133 polymorphism of the OGG1 gene with the risk of malignant neoplasms development in people in people exposed to radiation exposure. Byulleten Radiatsiya i risk = Bulletin Radiation and Risk. 2023;32(3): 97–108. (In Russian).
2. Chakraborty R, Sankaranarayanan K. Cancer predisposition, radiosensitivity and the risk of radiation-induced cancers. II. A Mendelian single-locus model of cancer predisposition and radiosensitivity for predicting cancer risks in populations. Radiation research.1995;143(3): 293–301.
3. Yin J, Vogel U, Ma Y, Qi R, Sun Z, Wang H. The DNA repair gene XRCC1 and genetic susceptibility of lung cancer in a northeastern Chinese population. Lung Cancer. 2007;56(2): 153–160.
4. Yen CY, Liu SY, Chen CH, Tseng HF, Chuang LY, Yang CH, et al. Combinational polymorphisms of four DNA repair genes XRCC1, XRCC2, XRCC3, and XRCC4 and their association with oral cancer in Taiwan. Journal of Oral Pathology and Medicine. 2008;37(5): 271–277. DOI: 10.1111/j.1600-0714.2007.00608.x.
5. Xue X, Yin Z, Lu Y, Zhang H, Yan Y, Zhao Y, et al. The joint effect of hOGG1, APE1, and ADPRT polymorphisms and cooking oil fumes on the risk of lung adenocarcinoma in Chinese non-smoking females. PLoS One. 2013;8(8): e71157. DOI: 10.1371/journal.pone.0071157.
6. Degteva MO, Shagina NB, Shishkina EA, Tolstykh EI. Currentstatus of the radioactive contamination of the Techa river in1949-1956. Radiarsionnaya biologiya. Radioekologiya = Radiation biology. Radioekology. 2016;56(5): 523–534. (In Russian).
7. Silkin SS, Krestinina LYu, Startsev VN, Akleev AV. Ural cohort of emergency-irradiated population. Meditsina ekstremalnykh situatsiy = Medicine of Extreme Situations. 2019;21(3): 393–402. (In Russian).
8. Kabzinski J, Walczak A, Dziki A, Mik M, Majsterek I. Impact of the Ser326Cys polymorphism of the OGG1 gene on the level of oxidative DNA damage in patients with colorectal cancer. Polski Przeglad Chirurgiczny. 2018;90(2): 13–15. DOI: 10.5604/01.3001.0011.7486.
9. Hatt L, Loft S, Risom L, Moller P, Sorensen M, Raaschou-Nielsen O. OGG1 expression and OGG1 Ser326Cys polymorphism and risk of lung cancer in a prospective study. Mutation Research. 2008;639(1-2): 45–54. DOI: 10.1016/j.mrfmmm.2007.11.002.
10. Alanazi M, Pathan AAK, Shaik JP, Alhadheq A, Khan Z, Khan W, et al. The hOGG1 Ser326Cys gene polymorphism and breast cancer risk in Saudi population. Pathology and Oncology Research. 2017;23(3): 525–535. DOI: 10.1007/s12253-016-0146-6.
11. Weiss JM, Goode EL, Ladiges WC, Ulrich CM. Polymorphic variation in hOGG1 and risk of cancer: a review of the functional and epidemiologic literature. Molecular carcinogenesis. 2005;42(3): 127–141. DOI: 10.1002/mc.20067.
12. Kohno T, Shinmura K, Tosaka M, Tani M, Kim SR, Sugimura H, et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene. 1998;16: 3219–3225. DOI: 10.1038/sj.onc.1201872.
13. Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms: Effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Research. 1999;59: 2557–2561.
14. Park YJ, Choi EY, Choi JY, Park JG, You HJ, Chung MH. Genetic changes of hOGG1 and the activity of oh8Gua glycosylase in colon cancer. European journal of cancer. 2001;37(3): 340– 346. DOI: 10.1016/s0959-8049(00)00388-9.
15. Endutkin AV, Zharkov DO. GO System, a DNA repair pathway to cope with oxidative damage. Molekulyarnaya biologiya = Molecular Biology. 2021;55(2): 223–242. DOI: 10.31857/S0026898421020063. (In Russian).
16. Yuan SS, Hou MF, Hsieh YC, Huang CY, Lee YC, Chen YJ, et al. Role of MRE11 in cell proliferation, tumor invasion, and DNA repair in breast cancer. Journal of the National Cancer Institute. 2012;104(19): 1485–1502. DOI: 10.1093/jnci/djs355.
17. Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Open Medicine Journal. 2009;3(2): 123–130. DOI: 10.1016/j.jclinepi.2009.06.005.
18. Higgins JPT, Altman DG, Gotzsche PC, Jüni P, Moher D, Oxman AD, et al. Cochrane Bias Methods Group. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. British Medical Journal. 2011;18(343): 7829:d5928. DOI: 10.1136/bmj.d5928.
19. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. British Medical Journal. 1997;315: 629–634. DOI: 10.1136/bmj.315.7109.629.
20. Stuck AE, Rubenstein LZ, Wieland D. Bias in meta-analysis detected by a simple, graphical test. Asymmetry detected in funnel plot was probably due to true heterogeneity. British Medical Journal. 1998;316: 469. DOI: 10.1136/bmj.316.7129.469.
21. Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicologic Pathology. 2010;38(1): 96–109. DOI: 10.1177/0192623309356453.
22. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2003;17(10): 1195–1214. DOI: 10.1096/fj.02-0752rev.
23. Akbari MR, Malekzadeh R, Shakeri R, Nasrollahzadeh D, Foumani M, Sun Y, et al. Candidate gene association study of esophageal squamous cell carcinoma in a high-risk region in Iran. Cancer Research. 2009;69(20): 7994–8000. DOI: 10.1158/0008-5472.CAN-09-1149.
24. Arizono K, Osada Y, Kuroda Y. DNA repair gene hOGG1 codon 326 and XRCC1 codon 399 polymorphisms and bladder cancer risk in a Japanese population. Japanese Journal of Clinical Oncology. 2008;38(3): 186–191. DOI: 10.1093/jjco/hym176.
25. Ahmed T, Nawaz S, Noreen R, Bangash KS, Rauf A, Younis M, et al. A 3' untranslated region polymorphism rs2304277 in the DNA repair pathway gene OGG1 is a novel risk modulator for urothelial bladder carcinoma. Annals of Human Genetics. 2018;82(2): 74–87. DOI: 10.1111/ahg.12225.
26. Canbay E, Cakmakoglu B, Zeybek U, Sozen S, Cacina C, Gulluoglu M, et al. Association of APE1 and hOGG1 polymorphisms with colorectal cancer risk in a Turkish population. Current Medical Research and Opinion. 2011;27(7): 1295–1302. DOI: 10.1185/03007995.2011.573544
27. Chang JS, Wrensch MR, Hansen HM, Sison JD, Aldrich MC, Quesenberry CP Jr, et al. Base excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African-Americans. Carcinogenesis. 2009;30(1): 78–87. DOI: 10.1093/carcin/bgn261
28. Chang WS, Shen TC, Liao M, Tsai YT, Hsia TC, Wu HC, et al. Significant contribution of DNA repair human 8-oxoguanine DNA N-glycosylase 1 genotypes to renal cell carcinoma. OncoTargets and Therapy. 2020;13: 1583–1591. DOI: 10.2147/OTT.S231733.
29. Couto PG, Bastos-Rodrigues L, Carneiro JG, Guieiro F, Bicalho MA, Leidenz FB, et al. DNA base-excision repair genes OGG1 and NTH1 in Brazilian lung cancer patients. Molecular Diagnosis and Therapy. 2015;19(6): 389–395. DOI: 10.1007/s40291-015-0164-1.
30. Floris M, Sanna D, Castiglia P, Putzu C, Sanna V, Pazzola A, et al. MTHFR, XRCC1 and OGG1 genetic polymorphisms in breast cancer: a case-control study in a population from North Sardinia. BMC Cancer. 2020;20(1): 234. DOI: 10.1186/s12885-020-06749-w.
31. Hosseini SM, Mohammadiasl J, Talaiezadeh A, Alidadi R, Bijanzadeh M. Influence of two DNA repair pathway polymorphisms in colorectal cancer risk in Southwest Iran. Asian Pacific Journal of Cancer Prevention. 2020;21(7): 1919–1924. DOI: 10.31557/APJCP.2020.21.7.1919.
32. Huang WY, Gao YT, Rashid A, Sakoda LC, Deng J, Shen MC, et al. Selected base excision repair gene polymorphisms and susceptibility to biliary tract cancer and biliary stones: a population-based case-control study in China. Carcinogenesis. 2008;29(1): 100–105. DOI: 10.1093/carcin/bgm247.
33. Upadhyay R, Malik MA, Zargar SA, Mittal B. OGG1 Ser326Cys polymorphism and susceptibility to esophageal cancer in low and high at-risk populations of northern India. Journal of Gastrointestinal Cancer. 2010;41(2): 110–115. DOI: 10.1007/s12029-009-9124-5.
34. Jin D, Zhang M. Hua H. Impact of polymorphisms in DNA repair genes XPD, hOGG1 and XRCC4 on colorectal cancer risk in a Chinese Han Population. Bioscience Reports. 2019;39(1): BSR20181074. DOI: 10.1042/BSR20181074.
35. Krupa R, Czarny P, Wigner P, Wozny J, Jablkowski M, Kordek R, et al. The relationship between single-nucleotide polymorphisms, the expression of DNA damage response genes, and hepatocellular carcinoma in a Polish population. DNA and Cell Biology. 2017;36(8): 693–708. DOI: 10.1089/dna.2017.3664.
36. Kury S, Buecher B, Robiou-du-Pont S, Scoul C, Colman H, Le Neel T, et al. Low-penetrance alleles predisposing to sporadic colorectal cancers: a French case-controlled genetic association study. BMC Cancer. 2008;8: 326. DOI: 10.1186/1471-2407-8-326.
37. McWilliams RR, Bamlet WR, Cunningham JM, Goode EL, de Andrade M Boardman A, et al. Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk. Cancer Research. 2008;68(12): 4928–4935. DOI: 10.1158/0008-5472.CAN-07-5539.
38. Mimouni A, Rouleau E, Saulnier P, Marouani A, Abdelali ML, Filali T, et al. Association of TERT, OGG1, and CHRNA5 polymorphisms and the predisposition to lung cancer in Eastern Algeria. Pulmonary Medicine. 2020;2020: 7649038. DOI: 10.1155/2020/7649038.
39. Minina VI, Bakanova ML, Soboleva OA, Ryzhkova AV, Titov RA, Savchenko YA, et al. Polymorphisms in DNA repair genes in lung cancer patients living in a coal-mining region. European Journal of Cancer Prevention. 2019;28(6): 522– 528. DOI: 10.1097/CEJ.0000000000000504.
40. Nakao M, Hosono S, Ito H, Watanabe M, Mizuno N, Sato S, et al. Selected polymorphisms of base excision repair genes and pancreatic cancer risk in Japanese. Journal of Epidemiology. 2012;22(6): 477–483. DOI: 10.2188/jea.JE20120010.
41. Okasaka T, Matsuo K, Suzuki T, Ito H, Hosono S, Kawase T, et al. hOGG1 Ser326Cys polymorphism and risk of lung cancer by histological type. Journal of Human Genetics. 2009;54(12): 739–745. DOI: 10.1038/jhg.2009.108.
42. Qian B, Zhang H, Zhang L, Zhou X, Yu H, Chen K. Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer. 2011;73(2): 138–146. DOI: 10.1016/j.lungcan.2010.11.018.
43. Rajagopal T, Seshachalam A, Rathnam KK, Jothi A, Viswanathan S, Talluri S, et al. DNA repair genes hOGG1, XRCC1 and ERCC2 polymorphisms and their molecular mapping in breast cancer patients from India. Molecular Biology Reports. 2020;47(7): 5081–5090. DOI: 10.1007/s11033-020-05577-2.
44. Ravegnini G, Nannini M, Simeon V, Musti M, Sammarini G, Saponara M, et al. Polymorphisms in DNA repair genes in gastrointestinal stromal tumours: susceptibility and correlation with tumour characteristics and clinical outcome. Tumor Biology. 2016;37(10): 13413–13423. DOI: 10.1007/s13277-016-5276-7.
45. Romanowicz H, Pyziak L, Jablonski F, Brys M, Forma E, Smolarz B. Analysis of DNA Repair Genes Polymorphisms in Breast Cancer. Pathology and oncology research. 2017;23(1): 117–123. DOI: 10.1007/s12253-016-0110-5.
46. Sliwinski T, Krupa R, Wisniewska-Jarosinska M, Pawlowska E, Lech J, Chojnacki J, et al. Common polymorphisms in the XPD and hOGG1 genes are not associated with the risk of colorectal cancer in a Polish population. The Tohoku Journal of Experimental Medicine. 2009;218(3): 185–191.
47. Srivastava K, Srivastava A, Mittal B. Polymorphisms in ERCC2, MSH2, and OGG1 DNA repair genes and gallbladder cancer risk in a population of Northern India. Cancer. 2010;116(13): 3160–3169. DOI: 10.1002/cncr.25063.
48. Sorensen M, Raaschou-Nielsen O, Hansen RD, Tjоnneland A, Overvad K, Vogel U. Interactions between the OGG1 Ser326Cys polymorphism and intake of fruit and vegetables in relation to lung cancer. Free Radical Research. 2006;40(8): 885–891. DOI: 10.1080/10715760600733129.
49. Wang T, Wang H, Yang S, Guo H, Zhang B, Guo H, et al. Association of APEX1 and OGG1 gene polymorphisms with breast cancer risk among Han women in the Gansu Province of China. BMC Medical Genetics. 2018;19(1): 67. DOI: 10.1186/s12881-018-0578-9.
50. Zhang Q, Zheng X, Li X, Sun D, Xue P, Zhang G, et al. The polymorphisms of miRNA-binding site in MLH3 and ERCC1 were linked to the risk of colorectal cancer in a case-control study. Cancer Medicine. 2018;7(4): 1264–1274. DOI: 10.1002/cam4.1319.
51. Zhang H, Wang L.A, Li Z, Peng Y, Cun YP, Dai N, et al. APE1 polymorphisms are associated with colorectal cancer susceptibility in Chinese Hans. World Journal of Gastroenterology. 2014;20(26): 8700–8708. DOI: 10.3748/wjg.v20.i26.8700.
52. Zhao H, Qin C, Yan F, Wu B, Cao Q, Wang M, et al. hOGG1 Ser326Cys polymorphism and renal cell carcinoma risk in a Chinese population. DNA and Cell Biology. 2011;30(5): 317–321. DOI: 10.1089/dna.2010.1135.
53. Zhu Y, Guo L, Wang S, Yu Q, Lu J. Association of smoking and XPG, CYP1A1, OGG1, ERCC5, ERCC1, MMP2, and MMP9 gene polymorphisms with the early detection and occurrence of laryngeal squamous carcinoma. International Journal of Cancer. 2018;9(6): 968–977. DOI: 10.7150/jca.22841.
54. Jiao X, Huang J, Wu S, Lv M, Hu Y, Jianfu Su, et al. hOGG1 Ser326Cys polymorphism and susceptibility to gallbladder cancer in a Chinese population. International Journal of Cancer. 2007;121(3): 501–505. DOI: 10.1002/ijc.22748.
Review
For citations:
Yanishevskaya M.A., Blinova E.A., Shishkina E.A., Akleyev A.V. Polymorphism of hOGG1 gene and susceptibility to malignant neoplasms in people affected by long-term low dose rate exposure. Radiatsionnaya Gygiena = Radiation Hygiene. 2024;17(4):55-67. (In Russ.) https://doi.org/10.21514/1998-426X-2024-17-4-55-67