НОВЫЕ ИСТОЧНИКИ МАЛЫХ ДОЗ РАДИАЦИИ: РЕЗУЛЬТАТЫ РАЗВИТИЯ ДИАГНОСТИЧЕСКОЙ И ТЕРАПЕВТИЧЕСКОЙ РАДИОЛОГИИ
Аннотация
Об авторе
Е. Я. МозероваРоссия
Тел.: (351) 232 80 33
E-mail: katerina_mozerov@mail.ru
Список литературы
1. National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. Washington, DC: National Academies Press. – 2006. – 733 p.
2. Einstein, A.J. Medical imaging: the radiation issue / A. J. Einstein // Nat Rev Cardiol. – 2009. – V. 6, №6. – Р. 436–438.
3. Scanff, P. Population exposure to ionizing radiation from medical examinations in France / Р. Scanff [et al.] // Br J Radiol. – 2008. – V. 81, № 963. – Р. 204–213.
4. Mettler, F.A. Jr. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources--1950-2007 / F.A. Mettler Jr. [et al.] // Radiology. – 2009. – V. 253, № 2. – Р. 520–531.
5. Fazel, R. Exposure to low-dose ionizing radiation from medical imaging procedures / R. Fazel [et al.] // N. Engl. J. Med. – 2009. – V. 361, № 9. – Р. 849–857.
6. Fabricant, P.D. Diagnostic medical imaging radiation exposure and risk of development of solid and hematologic malignancy / P.D. Fabricant [et al.] // Orthopedics. – 2012. – V. 35, № 5. – Р. 415–420.
7. Ron, E. Cancer risks from medical radiation / E. Ron // Health Phys. – 2003. – V. 85, № 1. – P. 47–59.
8. Wakeford, R. Childhood leukaemia following medical diagnostic exposure to ionizing radiation in utero or after birth / R. Wakeford // Radiat Prot Dosimetry. – 2008. – V. 132, № 2. – Р. 166–174.
9. Kleinerman, R.A. Cancer risks following diagnostic and therapeutic radiation exposure in children / R.A. Kleinerman // Pediatr Radiol. – 2006. – Vl. 36, Suppl 2. – Р. 121–125.
10. Beyan, C. The effect of radiologic imaging studies on the risk of secondary malignancy development in patients with Hodgkin lymphoma / С. Beyan [et al.] // Clin. Lymphoma Myeloma. – 2007. – V. 7, № 7. – P. 467–469.
11. Samara, E.T. Exposure of the Swiss population by medical x-rays: 2008 review / E.T. Samara [et al.] // Health Phys. – 2012 – V. 102, № 3. – Р. 263–270.
12. Brenner, David J. Computed Tomography — An Increasing Source of Radiation Exposure / David J. Brenner, Eric J. Hall // N. Engl. J. Med. – 2007. – № 357. – Р. 2277–2284.
13. Smith-Bindman, R. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer / R. Smith-Bindman [et al.] // Arch Intern Med. – 2009. – V. 169, № 22. – Р. 2078–2086.
14. Brenner, D.J. Estimated radiation risks potentially associated with full-body CT screening / D.J. Brenner, C.D. Elliston // Radiology. – 2004. – V. 232, № 3. – P. 735–738.
15. Richards, P.J. Spine computed tomography doses and cancer induction / P.J. Richards [et al.] // Spine (Phila Pa 1976). – 2010. – V. 15, № 35. – Р. 430–433.
16. Sodickson, A. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults / А. Sodickson [et al.] // Radiology. – 2009. – V. 251, № 1. – Р. 175–184.
17. Salottolo, K. Current utilization and radiation dose from computed tomography in patients with trauma / К. Salottolo [et al.] // Crit. Care. Med. – 2009. – V. 37, № 4. – Р. 1336–1340.
18. King, M.A. Radiation exposure from pediatric head CT: a biinstitutional study / М.А. King [et al.] // Pediatr Radiol. – 2009. – V. 39, № 10. – Р. 1059–1065.
19. Brenner, D. Estimated risks of radiation-induced fatal cancer from pediatric CT / D. Brenner [et al.] // Am. J. Roentgenol. – 2001. – V. 176, № 2. – Р. 289–296.
20. Small, G.R. Established and emerging dose reduction methods in cardiac computed tomography / G.R. Small [et al.] // J. Nucl. Cardiol. – 2011. – V. 18, № 4. – Р. 570–579.
21. Small, G.R. Low-dose cardiac imaging: reducing exposure but not accuracy / G.R. Small // Expert Rev Cardiovasc Ther. – 2012. – V. 10, № 1. – Р. 89–104.
22. Xu, L. Coronary CT angiography with low radiation dose / L. Xu, Z. Zhang // Int. J. Cardiovasc. Imaging. – 2010. – V. 26, Suppl. 1. – Р. 17–25.
23. Brambilla, M. Patient radiation doses and references levels in interventional radiology / М. Brambilla [et al.] // Radiol Med. – 2004. – V. 107, № 4. – Р. 408–418.
24. Lekovic, G.P. Radiation exposure during endovascular procedures / G.P. Lekovic [et al.] // Neurosurgery. – 2008. – V. 63, № 1. – Р. 81–85.
25. Magrassi, L. Neuroembolization may expose patients to radiation doses previously linked to tumor induction / L. Magrassi [et al.] // Acta Neurochir (Wien). – 2012. – V. 154, № 1. – Р. 33–41.
26. Kim, K.P. Occupational radiation doses to operators performing cardiac catheterization procedures / К.Р. Kim [et al.] // Health Phys. – 2008. – V. 94, № 3. – Р. 211–227.
27. Venneri, L. Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: insights from the National Research Council's Biological Effects of Ionizing Radiation VII Report / L. Venneri [et al.] // Am. Heart J. – 2009. – V. 157, № 1. – Р. 118–124.
28. Vano, E. Staff radiation doses in interventional cardiology: correlation with patient exposure / Е. Vano [et al.] // Pediatr Cardiol. – 2009. – V. 30, № 4. – Р. 409–413.
29. Vano, E. Radiation cataract risk in interventional cardiology personnel / Е. Vano [et al.] // Radiat Res. – 2010. – V. 174, № 4. – Р. 490–495.
30. Ciraj-Bjelac, O. Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? / О. Ciraj-Bjelac [et al.] // Catheter Cardiovasc Interv. – 2010. – V.76, № 6. – Р. 826–434.
31. Boix, J. Radiation dose to patients during endoscopic retrograde cholangiopancreatography / J. Boix, V. Lorenzo-Zúñiga // World J. Gastrointest. Endosc. – 2011. – V. 3, № 7. – Р. 140–144.
32. Mettler, F.A. Jr. Medical radiation exposure in the U.S. in 2006: preliminary results / F.A. Mettler Jr. // Health Phys. – 2008. – V. 95, № 5. – Р. 502–507.
33. Bedetti, G. Suboptimal awareness of radiologic dose among patients undergoing cardiac stress scintigraphy / G. Bedetti // J. Am. Coll. Radiol. – 2008. – V. 5, № 2. – Р. 126–131.
34. Brix, G. Radiation exposure of patients undergoing wholebody dual-modality 18F-FDG PET/CT examinations / G. Brix // J. Nucl. Med. – 2005. – V. 46, № 4. – Р. 608–613.
35. Hendrick, R.E. Radiation doses and cancer risks from breast imaging studies / R.E. Hendrick // Radiology. – 2010. – V. 257, № 1. – Р. 246–253.
36. Huang, B. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk / В. Huang // Radiology. – 2009. – V. 251, № 1. – Р. 166–174.
37. Leide-Svegborn, S. Radiation exposure of patients and personnel from a PET/CT procedure with 18F-FDG / S. Leide-Svegborn // Radiat Prot Dosimetry. – 2010. – V. 139, № 1–3. – Р. 208–213.
38. Roberts, F.O. Radiation dose to PET technologists and strategies to lower occupational exposure / F.O. Roberts [et al.] // J. Nucl. Med. Technol. – 2005. – V. 33, № 1. – Р. 44–47.
39. Jha, A.K. Estimation of radiation dose received by the radiation worker during F-18 FDG injection process / А.К. Jha, А. Zade, V. Rangarajan // Indian J. Nucl. Med. – 2011. – V. 26, № 1. – Р. 11–13.
40. Guillet, B.Technologist radiation exposure in routine clinical practice with 18F-FDG PET / В. Guillet [et al.] // J. Nucl. Med. Technol. – 2005. – V. 33, № 3. – Р. 175–179.
41. Hall, J.D. Lifetime exposure to radiation from imaging investigations / J.D. Hall [et al.] // Can. Fam. Physician. – 2006. – V. 52. – P. 976–977.
42. Cheng, Y. Dosimetric Comparison of CyberKnife with Other Radiosurgical Modalities for an Ellipsoidal Target / Y. Cheng [et al.] // Neurosurgery. – 2003. – V. 53, № 5. – P. 1155–1163.
43. Wen, N. Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer / N. Wen [et al.] // Phys. Med. Biol. – 2007. – V. 52, № 8. – Р. 2267–2276.
44. Winey, B. Evaluation of radiation dose delivered by cone beam CT and tomosynthesis employed for setup of external breast irradiation / B. Winey [et al.] // Med. Phys. – 2009. – V. 36. № 1. – P. 164–173.
45. Kry, S.F. Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy / S.F. Kry [et al.] // Int. J. Radiat. Oncol. Biol. Phys. – 2005. – V. 62, № 4. – Р. 1204–1216.
46. Vlachopoulou, V. Peripheral doses in patients undergoing Cyberknife treatment for intracranial lesions. A single centre experience / V. Vlachopoulou [et al.] // Radiation Oncology. – 2011. – V. 6, № 157. – Р. 1–10.
47. Petti, P.L. Peripheral doses in CyberKnife radiosurgery / P.L. Petti [et al.] // Med. Phys. – 2006. – V. 33, № 6. – Р. 1770–1779.
48. Zytkovicz, A. Peripheral dose in ocular treatments with CyberKnife and Gamma Knife radiosurgery compared to proton radiotherapy / А. Zytkovicz [et al.] // Phys. Med. Biol. – 2007. – V. 52, № 19. – Р. 5957–5971.
49. Tarin, T.V. Estimating the risk of cancer associated with imaging related radiation during surveillance for stage I testicular cancer using computerized tomography / T.V. Tarin, G. Sonn, R. Shinghal // J. Urol. – 2009. – V. 181, № 2. – P. 627–632.
Рецензия
Для цитирования:
Мозерова Е.Я. НОВЫЕ ИСТОЧНИКИ МАЛЫХ ДОЗ РАДИАЦИИ: РЕЗУЛЬТАТЫ РАЗВИТИЯ ДИАГНОСТИЧЕСКОЙ И ТЕРАПЕВТИЧЕСКОЙ РАДИОЛОГИИ. Радиационная гигиена. 2012;5(2):71-74.
For citation:
Mozerova E.Ya. NEW SOURCES OF LOW DOSES OF RADIATION: RESULTS OF DEVELOPMENT OF DIAGNOSTIC AND THERAPEUTIC RADIOLOGY. Radiatsionnaya Gygiena = Radiation Hygiene. 2012;5(2):71-74. (In Russ.)