Preview

Radiatsionnaya Gygiena = Radiation Hygiene

Advanced search

ON THE RELATIONSHIP BETWEEN AMBIENT DOSE EQUIVALENT AND ABSORBED DOSE IN AIR IN THE CASE OF LARGE-SCALE CONTAMINATION OF THE ENVIRONMENT BY RADIOACTIVE CESIUM

Abstract

One of the main aims of the study was an experimental determination of the conversion coefficient from ambient dose equivalent rate, Н*(10), to absorbed dose rate in air, D, in the case of radioactive contamination of the environment following the Chernobyl accident. More than 800 measurements of gamma-dose rates in air were performed at the typical locations (one-storey residential house, street, yard, kitchen-garden, ploughed field, undisturbed grassland, forest) of rural settlements and their surroundings in the heavily contaminated areas of the Bryansk region, Russia in the period of 1996–2010. Five commercially available models of portable gamma-ray dosimeters were employed in the investigation. All tested dosimeters were included into the State register of approved measuring instruments of Russia. In all dosimeters, scintillation detectors are used as detection elements. A photon spectrometry technique is applied in the dosimeters to determine gamma dose rate in air. The dosimeters are calibrated in terms of exposure rate, X, absorbed dose rate in air, D, and ambient dose equivalent rate, Н*(10). A very good agreement was found between different dosimeters calibrated in the same units; the reading ratios were close to 1 and the correlation coefficients (Pearson’s or Spearman’s) were higher than 0.99. The Н*(10)/D ratio values were location-specific ranging from 1.23 Sv/Gy for undisturbed grasslands and forests to 1.47 Sv/Gy for wooden houses and asphalted streets. A statistically significant negative correlation (Spearman’s coefficient = -0.833; P<0.01; n=9) was found between the Н*(10)/D ratio and the average energy of gamma-rays determined with a NaI(Tl)-based gamma-ray monitor. For the whole area of a settlement and its surroundings, the average ratio of Н*(10) to D was calculated as 1.33 Sv/Gy. The overall conversion coefficient from ambient dose equivalent rate, Н*(10), to external effective dose rate, Ė, for adults was estimated by a value of 0.52 Sv/Sv. This value is valid for the remote period after the severe radiation accident that had resulted in large-scale contamination of the environment by radioactive cesium. The findings of this study are discussed in comparison with results obtained by other researches shortly after the Chernobyl and Fukushima accidents.

About the Authors

V. P. Ramzaev
Saint-Petersburg Research Institute of Radiation Hygiene after Professor P.V. Ramzaev, Rospotrebnadzor, Saint-Petersburg, Russia
Russian Federation

Candidate of Medical Sciences, Leading Researcher, Saint-Petersburg Research Institute of Radiation Hygiene after Professor P.V. Ramzaev. Address: Mira Str. 8, 197101, Saint-Petersburg, Russia. Tel./fax: +7 812 232 04 54. E-mail: V.Ramzaev@mail.ru



A. N. Barkovsky
Saint-Petersburg Research Institute of Radiation Hygiene after Professor P.V. Ramzaev, Rospotrebnadzor, Saint-Petersburg, Russia
Russian Federation

The Head of the Laboratory of External Exposure, Saint-Petersburg Research Institute of Radiation Hygiene after Professor P.V. Ramzaev. Address: Mira Str. 8, 197101, Saint-Petersburg, Russia. Tel./fax: +7 812 232 04 54. E-mail: ANBarkovski@yandex.ru



References

1. ГОСТ-8.087-2000. Государственная система обеспечения единства измерений. Установки дозиметрические рентгеновского и гамма-излучений эталонные. Методика поверки по мощности экспозиционной дозы и мощности кермы в воздухе, введена 01.01. 2002 - М.: Изд-во стандартов, 2001. - 19 с. : http://www.rags.ru/gosts/gost/6558. (дата обращения 22.02.2015 г.)

2. Кутьков, В.А. Величины в радиационной защите и безопасности / В.А. Кутьков // АНРИ. - 2007. - № 3. - С. 2-25.: http://www.doza.ru/docs/pub/2007/02-25%203%202007. pdf. (дата обращения 22.02.2015 г.)

3. ICRP - International Commission on Radiological Protection. Conversion Coefficients for use in Radiological Protection against External Radiation. ICRP Publication No. 74. - PERGAMON, 1996. - 205 p.

4. ICRP - International Commission on Radiological Protection. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposure. ICRP Publication 116 // Ann. ICRP. - 2010. - Vol. 40. - No. 2-5.

5. Голиков, В.Ю. Сравнение различных подходов к ограничению облучения населения при радиоактивном загрязнении окружающей среды (на примере внешнего облучения на территориях, загрязненных после аварии на Чернобыльской АЭС) / В.Ю. Голиков // Радиационная гигиена. - 2008. - Т. 1, № 4. - С. 21-25: http://www.radhyg.ru images/stories/Vol14/articles/21-25.pdf. (дата обращения 22.02.2015 г.).

6. Golikov, V. External exposure of the population living in areas of Russia contaminated due to the Chernobyl accident / V. Golikov, M.I. Balonov, P. Jacob // Radiat. Environ. Biophys. - 2002. - Vol. 41, No. 3. - P. 185-193.

7. Golikov, V. Evaluation of conversion coefficients from measurable to risk quantities for external exposure over contaminated soil by use of physical human phantoms / V. Golikov [et al.] // Radiat. Environ. Biophys. - 2007. - Vol. 46, No. 4. - P. 375-382.

8. Ramzaev, V. Gamma-dose rates from terrestrial and Chernobyl radionuclides inside and outside settlements in Bryansk region, Russia in 1996-2003 / V. Ramzaev [et al.] // J. Environ. Radioact. - 2006. - Vol. 85, No. 2-3. - P. 205-227.

9. Нурлыбаев, К. Проблемы дозиметрии слабопроникающих излучений / К. Нурлыбаев, Ю.Н. Мартынюк // АНРИ. - 2011. - № 3. - С. 9-15 : http://www.doza.ru/docs/pub/2011/0915%203%202011.pdf. (дата обращения 22.02.2015 г.).

10. Takada, M. Measurement of radiation environment inside residential houses in radioactive contaminated areas due to the Fukushima nuclear accident / M. Takada [et al.] // Progress in Nuclear Science and Technology. - 2014. - Vol. 4. - P. 43-46.: http://www.aesj.or.jp/publication/pnst004 data/043_046.pdf. (дата обращения 05.05.2015 г.).

11. Hille, R. Current development of the human and environmental contamination in the Bryansk-Gomel spot due to the Chernobyl accident / R. Hille [et al.] // Radiat. Environ. Biophys. - 2000. - Vol. 39, No. 2. - P. 99-109.

12. Ramzaev, V. Long-term stability of decontamination effect in recreational areas near the town Novozybkov, Bryansk Region, Russia / V. Ramzaev [et al.] // J. Environ. Radioact. - 2006. - Vol. 85, No. 2-3. - P. 280-298.

13. Ramzaev, V. Decontamination tests in the recreational areas affected by the Chernobyl accident: efficiency of decontamination and long-term stability of the effects / V. Ramzaev, A. Barkovsky, A. Mishine, K.G. Andersson // Journal of the Society for Remediation of Radioactive Contamination in the Environment. - 2013. - Vol. 1 No. 2. - P. 93-107.

14. Roed, J. Mechanical decontamination tests in areas affected by the Chernobyl accident. RISØ National Laboratory report Risø-R-1029 (EN) / J. Roed [et al.] // RISØ National Laboratory, Roskilde, Denmark. - 1998. - 98 p.: http:// http://orbit.dtu.dk/fedora/objects/orbit:90197/datastreams file_7751126/content. (дата обращения 22.02.2015 г.).

15. Дозиметр гамма излучения EL 1101. Инструкция по эксплуатации. АТОМТЕХ, Минск, 1995. - 46 c.

16. Дозиметры ДКС-АТ1121, ДКС-АТ1123.: http://www. http://atomtex.ru/ru/products/dozimetry-portativnye/dozimetrydksat1121-dks-at1123. (дата обращения 22.02.2015 г.).

17. Спектрометры-дозиметры гамма и рентгеновского излучения МКС-СК1 «СКИФ». Описание типа: http://www.kipguide. ru/info/19630-00. (дата обращения 29.01.2015 г.).

18. Дозиметр гамма излучения EL-1117. Инструкция по эксплуатации. АТОМТЕХ, Минск, 1996. - 91 c.

19. Grasty, R.L. Calibration of a 7.6 cm x 7.6 cm (3 inch x 3 inch) sodium iodide gamma ray spectrometer for air kerma rate / R.L. Grasty, B.R.B. Walters, J. Hovgaard, J.R. LaMarre // Radiat. Prot. Dosimetry. - 2001. - Vol. 94, No. 4. - P. 309-316.

20. Helfer, I. K. Calibration factors for Ge detectors used for field spectrometry / I. K. Helfer, K.M. Miller // Health Phys. - 1988. - Vol. 55, No. 1. - 15-29.

21. Радиационный мониторинг доз облучения населения территорий, подвергшихся радиоактивному загрязнению вследствие аварии на Чернобыльской АЭС. Методические рекомендации: утв. 27.12.07, введ. в действие с 27.12.07. - M.: Роспотребнадзор, 2007. - 70 c.: http://meganorm. ru/Data2/1/4293835/4293835611.pdf. (дата обращения 09.03.2015.).

22. Балонов, М.И. Дезактивация населенных пунктов Брянской области после аварии на Чернобыльской АЭС / М.И. Балонов, В.Ю. Голиков, В.И. Пархоменко // Радиационная гигиена. - 2014. - Т. 7, № 1. - С. 5-15.

23. Saito, K. External dose due to terrestrial gamma rays on the snow cover / K. Saito // Radiat. Prot. Dosim. - 1991. - Vol. 35, No. 1- P. 31-39.

24. Центр современных психотехнологий. Скрипты математических расчетов: http://psytech-center.ru/lib/scriptstat. (дата обращения 22.02.2015.).

25. Roed, J. Decontamination in a Russian settlement / J. Roed [et al.] // RISØ National Laboratory report Riso-R-870 (EN). RISØ National Laboratory, Roskilde, Denmark. - 1996. - 102 P.: http://www.iaea.org/inis/collection/NCLCollectionStore/_ Public/27/053/27053487.pdf. (дата обращения 09.03.2015 г.).

26. Логачев, В.А. Динамика уровней гамма-излучения и формирование доз внешнего облучения / В.А. Логачев [и др.] // В кн. «Медицинские аспекты аварии на Чернобыльской атомной электростанции». Материалы научной конференции, 11-13 мая 1988 г. - Киев: «Здоровья», 1988. - С. 118-125.

27. JAEA - Japan Atomic Energy Agency. Characteristics of Caesium-134 and Caesium-137.: http://c-navi.jaea. http://go.jp/en/background/remediation-following-majorradiationaccidents/characteristics-of-caesium-134-andcaesium137.html. (дата обращения 26.02.2015 г.).

28. Mück, K. A consistent radionuclide vector after the Chernobyl accident / K. Mück [et al.] // Health Phys. - 2002. - Vol. 82, No. 2. - P. 141-156.

29. Fogh, C. L. Decontamination in a Russian settlement / C.L. Fogh [et al.] // Health Phys. - 1999. - Vol. 76, No. 4. - P. 421-430.

30. UNSCEAR - United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation, Report to the General Assembly with Scientific Annexes. - United Nations, New York. - 2000.: http://www. http://unscear.org/unscear/publications/2000_1.html. (дата обращения 05.05.2015 г.).

31. Hirose, K. 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results / K. Hirose // J. Environ. Radioact. - 2012. - Vol. 111, Sep. - P. 13-17.

32. Kobayashi, S. Radioactive contamination mapping of northeastern and eastern Japan by a car-borne survey system, Radi-Probe / S. Kobayashi [et al.] // J. Environ. Radioact. - 2015. - Vol. 139, Jan. - P. 281-293.

33. Akahane, K. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident / K. Akahane [et al.] // Sci. Rep. - 2013. - Vol. 3, No. 1670. - P. 1-5.

34. Радиация и Риск: Бюллетень Национального радиационно-эпидемиологического регистра. Специальный выпуск. Накопленные средние эффективные дозы. Медицинский радиологический научный центр РАМН, Москва - Обнинск, 1999. - 125 с.


Review

For citations:


Ramzaev V.P., Barkovsky A.N. ON THE RELATIONSHIP BETWEEN AMBIENT DOSE EQUIVALENT AND ABSORBED DOSE IN AIR IN THE CASE OF LARGE-SCALE CONTAMINATION OF THE ENVIRONMENT BY RADIOACTIVE CESIUM. Radiatsionnaya Gygiena = Radiation Hygiene. 2015;8(3):6-32.

Views: 2554


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-426X (Print)
ISSN 2409-9082 (Online)