Modern principles of the radiation protection from sources of ionizing radiation in medicine. Part 1: Trends, structure of x-ray diagnostics and doses from medical exposure
https://doi.org/10.21514/1998-426X-2019-12-1-6-24
Abstract
Implementation of modern highly informative methods of X-ray diagnostics (computed tomography, interventional examinations, nuclear medicine), associated with the increase of doses to the public and patients, requires the development and improvement of the existing system of the radiation protection from medical exposure. Despite the prevalence of the traditional imaging modalities in the structure of X-ray diagnostics in the Russian Federation (radiography and fluorography compose up to 95% out of 280 mln. X-ray examinations performed in 2017), the major contribution into the collective dose from medical exposure is due to the computed tomography (50,5%). Comparison of the structure of X-ray diagnostics in the Russian Federation with European Union indicates the absence of fluorography examinations and significantly (up to a factor of 5) higher contribution of computed tomography in European countries. An average collective dose from medical exposure in European countries is composed of 80% of computed tomography and of 10% of nuclear medicine; a mean effective dose per X-ray examination are higher up to a factor of 3 compared to Russia. The analysis of the trends of the development of the X-ray diagnostic in the Russian Federation allows predicting a further increase of the number of computer tomography, interventional and nuclear medicine examinations as well as an increase of the collective dose from medical exposure up to a factor of two in the next decade. This will be associated with changes in the structure of the X-ray diagnostics and an increase of the mean effective doses from X-ray examinations.
About the Authors
G. G. OnischenkoRussian Federation
Doctor of Medical Science, Professor, member
A. Yu. Popova
Russian Federation
Doctor of Medical Science, Professor, Head
I. K. Romanovich
Russian Federation
Doctor of Medical Sciences, Professor, Corresponding member of the Russian Academy of Sciences, Director
A. V. Vodovatov
Russian Federation
Head of Medical Protection Laboratory, Leading Researcher
Mira str., 8, St. Petersburg, 197101, Russia
N. S. Bashketova
Russian Federation
Head of the Directorate
O. A. Istorik
Russian Federation
Head of the Directorate
L. A. Chipiga
Russian Federation
Researcher, Medical protection laboratory
I. G. Shatsky
Russian Federation
Researcher, Medical protection laboratory
L. V. Repin
Russian Federation
Junior Researcher of Information Analytical Center
A. M. Biblin
Russian Federation
Head of Information Analytical
References
1. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. Sources and Effects of Ionising Radiation. UNSCEAR 2008. Report to the General Assembly with Scientific Annexes. – New York, UN-2010.-Volume I. – Annex A.
2. World Health Organization/Global initiative on Radiation Safety in Healthcare Settings. World Health Organization. Technical meeting report, Geneva, 2008, 100 p.
3. International Atomic Energy Agency, World Health Organization. Bonn call for action. International Atomic Energy Agency, World Health Organization. 10 Action to Improve Radiation Protection in Medicine in the Next Decade. – Available on: https://www.who.int/ionizing_radiation/medical_radiation_exposure/BonnCallforAction2014.pdf (Accessed: 06.02.2019).
4. ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection: translation from English. Edited by M.F. Kiselev, N.K. Shandala. Мoscow, «Alana», 2009, 312 p. (In Russian)
5. ICRP, 2007. Radiological Protection in Medicine. ICRP Publication 105. Ann. ICRP 37 (6). (in Russian)
6. International Atomic Energy Agency. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards/International Atomic Energy Agency. International Basic Safety Standards – IAEA, Vienna, 2015, GSR Part 3, 518 p. (in Russian)
7. International Atomic Energy Agency. Radiation Protection and safety in medical uses of ionizing radiation. International Atomic Energy Agency. Specific safety guide. Vienna, IAEA, 2018, №SSG-46, 340 p.
8. Samei E. [et. al.] Medical Imaging Dose Optimization from Ground up: Expert Opinion of an International Summit. J. Radiol. Prot., Vol. 38(3), 2018, pp. 967-989.
9. Järvinen H., Vassileva J., Samei E., Wallace A., Vano E. and Rehani M. Patient dose monitoring and the use of diagnostic reference levels for the optimization of protection in medical imaging: current status and challenges worldwide. Journal of Medical Imaging, 2017, Vol. 4(3), pp. 031214.
10. Toma P. [et. al.] Radiation exposure in diagnostic imaging: wisdom and prudence, but still a lot to understand. Radiol. Med., 2017, Vol. 122, pp.215-220.
11. Frush D.P., Perex M.D.R. Children, medical radiation and the environment: An important dialogue. Environmental Research, 2017, Vol. 156, pp. 358-363.
12. Rehani M., Vassileva J. Survey of imaging technology and patient dose recording practice in developing countries. Radiat. Prot. Dosimetry, 2018, Vol. 181(3), pp. 240-245. doi: 10.1093/rpd/ncy019
13. Järvinen H., Vassileva J, Samei E, Wallace A, Vano E, Rehani M. Patient dose monitoring and the use of diagnostic reference levels for the optimization of protection in medical imaging: current status and challenges worldwide. J Med Imaging, 2017, Vol. 4(3), pp. 312-314. doi: 10.1117/1.JMI.4.3.031214
14. Results of the 2017 radiation-hygienic passportisation in subjects of the Russian Federation: radiation-hygienic passport of the Russian-Federation. Moscow, Federal service of surveillance on consumer rights protection and human wellbeing, 2018, 128 p. (In Russian)
15. Balonov M., Golikov V., Zvonova I., Chipiga L., Kalnitsky S., Sarycheva S. and Vodovatov A. Patient doses from medical examinations in Russia: 2009–2015. J. Radiol. Prot., Vol. 38, pp. 121-140. doi:https://doi.org/10.1088/1361-6498/aa9b99
16. Balonov M.I., Golikov V.Yu., Zvonova I.A., Kalnitsky S.A., Repin V.S., Sarycheva S.S., Chipiga L.A. Current levels of medical exposure in Russia. Radiatsionnaya Gygiena = Radiation Hygiene, 2015, Vol. 8(3), pp. 67-79. (In Russian)
17. Zvonova I.A., Chipiga L.A. Trends on medical exposure and radiation protection in nuclear medicine in Russia. Proceedings of International Conference on Radiation Protection in Medicine: Achieving Change in Practice. Vienna, 2017. IAEA, book of contributions, pp. 188 – 192. – Available on: https://www.iaea.org/sites/default/files/18/02/rpop-session4.pdf (Accessed: 16.02.2019).
18. Chipiga L.A., Zvonova I.A., Ryzhkova D.V., Menkov M.A., Dolgushin М.B. Levels of patients’ exposure and a potential for optimization of the pet diagnostics in the Russian Federation. Radiatsionnaya Gygiena = Radiation Hygiene, 2017, Vol. 10(4), pp. 31-43. (In Russian) – Available on: https://doi.org/10.21514/1998-426X-2017-10-4-31-43 (Accessed: 16.02.2019).
19. Chipiga L., Vodovatov A., Zvonova I., Bernhardsson C. Assessment of patient doses and possible approaches for implementation of optimization procedures in PET/CT examinations in the Russian Federation. Proceedings of the 13th international conference on «Medical Physics in the Baltic States» (Kaunas, 9-11 November 2017), 2017, pp. 36 – 40.
20. Chipiga L.A., Bernhardsson C. Patient doses in Computed Tomography examinations in two regions of the Russian Federation. Rad. Prot. Dos., 2016, Vol. 169(1-4), pp. 240-244.
21. Ternovoy S.K., Sinitsyn V.E. Perspectives of the development of the methods of X-ray diagnostics. Analytical review. – Available on: https://rosoncoweb.ru/library/radiodiagnostics/002.php (Accessed: 06.02.2019) (In Russian)
22. Ternovoy S.K., Sinitsyn V.E. Development of the computed tomography and the progress of X-ray diagnostics. Radiologypractice, 2005, Vol. 4, pp. 23-29. (In Russian)
23. Matkevich E.I., Sinitsyn V.E., Zelikman M.I., Kruchinin S.A., Ivanov I.V. Main directions of reducing patient irradiation doses in computed tomography. REJR, 2018, Vol. 8 (3), pp. 60-73. DOI:10.21569/2222-7415-2018-8-3-60-73. (In Russian)
24. Breast Tomosynthesis. Considerations for Routine Clinical Use. – Available from: http://www.wishmd.com/wp-content/uploads/2016/04/tomo-white-paper.pdf (Accessed:
25. 02.2019).
26. ICRP, 2015. Radiological Protection in Cone Beam Computed Tomography (CBCT). ICRP Publication 129. Ann. ICRP 44(1).
27. Dawood A., Patel S., Brown J. Cone beam CT in dental practice. Br Dent J., 2009, Vol. 207(1), pp. 23-28. doi: 10.1038/sj.bdj.2009.560.
28. De Marneffe M., Milicevic M., Milicevic M. Cone Beam CT. New tool in diagnostic imaging. Rev Med Liege, 2017, Vol. 72(10), pp. 457-461.
29. Vetter S.Y., Steffen K., Swartman B. [et. al.] Influence of intraoperative conventional fluoroscopy versus cone beam CT on long-term clinical outcome in isolated displaced talar fractures. J Orthop Surg Res, 2019, Vol. 14(1), pp. 8. doi: 10.1186/s13018-018-1043-3.
30. Goo H.W., Goo J.M. Dual-Energy CT: New Horizon in Medical Imaging. Korean J Radiol, 2017, Vol. 18(4), pp. 555-569. doi: 10.3348/kjr.2017.18.4.555
31. Xie Z.Y., Chai R.M., Ding G.C., Liu Y., Ren K. T and N Staging of Gastric Cancer Using Dual-Source Computed Tomography. Gastroenterol Res Pract., 2018, Vol. 4, pp. 5015202. doi: 10.1155/2018/5015202
32. Greffier J., Pereira F.R., Viala P., Macri F., Beregi J.P., Larbi A. Interventional spine procedures under CT guidance: How to reduce patient radiation dose without compromising the successful outcome of the procedure? Phys Med., 2017, Vol. 35, pp. 88-96. doi: 10.1016/j.ejmp.2017.02.016
33. Svahn T.M., Houssami N., Sechopoulos I., Mattsson S. Review of radiation dose estimates in digital breast tomosynthesis relative to those in two-view full-field digital mammography. The BREAST, 2015, Vol. 24(2), pp. 93–99.
34. Helvie M.A. Digital Mammography Imaging: Breast Tomosynthesis and Advanced Applications. Radiol Clin North Am., 2010, Vol. 48(5), pp. 917–929.
35. Båth M., Svalkvist A., von Wrangel A., Rismyhr-Olsson H., Cederblad A. Effective dose to patients from chest examinations with tomosynthesis. Radiat Prot Dosimetry, 2010, Vol. 139(1-3), pp.153-8. doi: 10.1093/rpd/ncq092
36. Murano T. [et. al.] Radiation exposure and risk–benefit analysis in cancer screening using FDG-PET: results of a Japanese nationwide survey. Ann Nucl Med, 2011, Vol. 25, pp. 657–666. doi: 10.1007/s12149-011-0511-1
37. Padole A., Ali Khawaja R.D., Karla M., Singh S. CT radiation dose and iterative reconstruction techniques. American Journal of Roentgenology, 2015, Vol. 204, pp. 384-392. doi: 10.2214/AJR.14.13241
38. Klink T., Obmann V., Heverhagen J., Stork A., Adam G., Begemann P. Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. Eur J Radiol., 2014, Vol. 83(9), pp. 1645-54. doi: 10.1016/j.ejrad.2014.05.033
39. Status and perspectives of the development of the nuclear medicine and radiation therapy in Russia considering the international trends (analytical review). – 2008. – Available on: www.oprf.ru/files/yad_medicine.doc Last accessed 16.01.2019. (In Russian) (Accessed: 16.02.2019).
40. Romanova S. Nuclear medicine: current state and trends of development. Remedium, 2013, Vol. 6, pp. 8-20. (In Russian)
41. Stasi G.A., Ruoti E.M. Critical Evaluation in the Delivery of the Ultrasound Practice: The Point of View of the Radiologist. Italian Journal of Medicine, 2012, Vol. 9(1), pp. 5-10. – Available on: https://doi.org/10.4081/itjm.2015.502 (Accessed: 16.02.2019).
42. [On-line resource]: – Available on: https://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/MedicalImaging/MRI/ucm482765.htm (Accessed: 16.02.2019).
43. European Commission. Medical Radiation Exposure of the European Population. European Commission. Radiation protection, 2014, № 180, Part ½, 181 p.
44. Hart D., Hilier M.C., Shrimpton P.C. HPA-CRCE-034 – Doses to Patients from Radiographic and Fluoroscopic X-ray Imaging Procedures in the UK – 2010 Review. Health Protection Agency, 2012, 87 p.
45. Onishchenko G.G., Popova A.Yu., Romanovich I.К., Barkovsky A.N., Kormanovskaya T.A., Shevkun I.G. Radiation-hygienic passportization and USIDC-information basis for management decision making for radiation safety of the population of the Russian Federation. Report 1. Main achievements and challenges to improve. Radiatsionnaya Gygiena = Radiation Hygiene, 2017, Vol.10(3), pp. 7-17. (In Russian): – Available on: https://doi.org/10.21514/1998-426X-2017-10-3-7-17 (Accessed: 16.02.2019).
46. Onishchenko G.G., Popova A.Yu., Romanovich I.К., Barkovsky A.N., Kormanovskaya T.A., Shevkun I.G. Radiation-hygienic passportization and USIDC-information basis for management decision making for radiation safety of the population of the Russian Federation Report 2: Characteristics of the sources and exposure doses of the population of the RF. Radiatsionnaya Gygiena = Radiation Hygiene, 2017, Vol.10(3), pp. 18-35. (In Russian): – Available on: https://doi.org/10.21514/1998-426X-2017-10-3-18-35 (Accessed: 16.02.2019).
47. Vodovatov A.V. Practical implementation of the diagnostic reference levels concept for the common radiographic examinations. Radiatsionnaya Gygiena = Radiation Hygiene, 2017, Vol.10(1), pp. 47-55. (In Russian): – Available on: https://doi.org/10.21514/1998-426X-2017-10-1-47-55 (Accessed: 16.02.2019).
48. Vodovatov A.V., Golikov V.Yu., Kalnitsky S.A., Shatsky I.G., Chipiga L.A. Evaluation of levels of exposure of adult patients from common radiographic examinations in the Russian Federation in 2009–2014. Radiatsionnaya Gygiena = Radiation Hygiene, 2017, Vol.10(3), pp. 66-75. (In Russian): – Available on: https://doi.org/10.21514/1998-426X-2017-10-3-66-75 (Accessed 16.02.2019).
49. Vodovatov A.V., Golikov V.Yu., Kamyshanskaya I.G., Zinkevich K.V., Bernhardsson C. Estimation of the conversion coefficients from dose-area product to effective dose for barium meal examinations for adult patients. Radiatsionnaya Gygiena = Radiation Hygiene, 2018;11(1):93-100. (In Russian): – Available on: https://doi.org/10.21514/1998-426X-2018-11-1-93-100 (Accessed: 16.02.2019).
50. Bontrager K.L., Lampignano J.P. Textbook of radiographic positioning and related anatomy. Elsevier Mosby, 2014, 826 p.
51. Medical X-ray diagnostics: technical aspects, clinical materials, radiation safety Ed. by R.V. Stavitsky. Moscow, Norma, 2003, 344 p. (In Russian)
52. Shumutko B.I., Makarenko S.V. Standards of diagnostic and treatment of the internal diseases. 3d ed. Saint-Petersburg “Elbi-SPb”, 2005, 800 p. (In Russian)
53. Eurostat: your key to the European statistics. – Available on: https://ec.europa.eu/eurostat/data/database (Accessed: 09.02.2019)
54. Golikov V.Yu., Sarycheva S.S., Balonov M.I., Kalnitsky S.A. Уstimation of patients exposure under intervention radiological examinations. Radiatsionnaya Gygiena = Radiation Hygiene, 2009, Vol. 2(3), pp. 26-31. (In Russian)
55. The Organization for Economic Co-operation and Development. Health at a Glance 2017: OECD Indicators. The Organization for Economic Co-operation and Development. OECD Publishing, Paris, 2018, 220 p.
56. U.S. Preventive Services Task Force. Final recommendation statement: lung cancer: screening. U.S. Preventive Services Task Force. – Available on: www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/lung-cancer-screening. (Accessed: 06.02.2019)
57. Iaccarino J.M., Clark J., Bolton R., Kinsinger L., Kelley M., Slatore C.G., Au D.H., Wiener R.S. A National Survey of Pulmonologists’ Views on Low-Dose Computed Tomography Screening for Lung Cancer. Ann. Am. Thorac. Soc., 2015, Vol. 12(11), рр. 1667-75.
58. Marshall H.M., Bowman R.V., Yang I.A., Fong K.M, Berg C.D. Screening for lung cancer with low-dose computed tomography: a review of current status. Journal of Thoracic Disease, 2013, Vol. 5, рр. 524-539.
59. Maryasheva Ju.A., Sinitsyn V.E., Ternovoy S.K. The role of CT-angiography in the examination of the patients with the suspected coronary arteria disease. Diagnostic and interventional radiology, 2010, Vol. 4, № 1, pp. 67-73. (In Russian)
60. Vanhoenacker P.K., Heijenbrok-Kal M.H., Van Heste R. Decramer I., Van Hoe L.R., Wijns W., Hunink M.G. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology, 2007, Vol. 244, pp. 419–428.
61. Moscow lung cancer screening. – Available on: http://medradiology.moscow/ndkt (Accessed: 06.02.2019). (In Russian)
62. Federal service of the governmental statistics. Demography. – Available on: http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/population/demography/# (Accessed: 06.02.2019). (In Russian)
63. Vodovatov A.V. Improvement of radiation safety standards. Part 1. Appropriateness of the limitation of the medical exposure of healthy individuals. Radiatsionnaya Gygiena = Radiation Hygiene, 2018, Vol.11(3), pp.115-124. (In Russian). – Available on: https://doi.org/10.21514/1998-426X-2018-11-3-115-124 (Accessed: 06.02.2019).
64. Karostik D.V., Kamyshanskaya I.G., Cheremisin V.M., Drozdov A.A, Vodovatov A.V. Evaluation of low-dose CT implementation for lung cancer screening in a general practice hospital.IOP Conf. Series: Journal of Physics: Conf. Series, 2018, Vol. 967. doi:10.1088/1742-6596/967/1/012006
65. Mazzone P.J. Silvestri G.A., Patel S., Kanne J.P., Kinsinger L.S., Wiener R.S., Soo Hoo G., Detterbeck F.C. Screening for Lung Cancer: CHEST Guideline and Expert Panel Report. Chest, 2018, Vol.153 (4), рр. 954 – 985.
66. Kim K.P., Einstein A.J., de Gonzalez A.B. Coronary artery calcification screening: estimated radiation dose and cancer risk. Archives of internal medicine, 2009, Vol. 169(13), рр. 1188-1194. doi:10.1001/archinternmed.2009.162.
Review
For citations:
Onischenko G.G., Popova A.Yu., Romanovich I.K., Vodovatov A.V., Bashketova N.S., Istorik O.A., Chipiga L.A., Shatsky I.G., Repin L.V., Biblin A.M. Modern principles of the radiation protection from sources of ionizing radiation in medicine. Part 1: Trends, structure of x-ray diagnostics and doses from medical exposure. Radiatsionnaya Gygiena = Radiation Hygiene. 2019;12(1):6-24. (In Russ.) https://doi.org/10.21514/1998-426X-2019-12-1-6-24