Analysis of the radioprotective properties of 3-hydroxypyridine fumarate on an invertebrate animal model after proton irradiation in vivo
https://doi.org/10.21514/1998-426X-2025-18-1-27-37
Abstract
The purpose of the article is to analyze the radio protective and antioxidant properties of 3-hydroxypyridine fumarate in interaction with proton irradiation on a model test organism from the suborder Daphnia magna crustaceans in vivo.
The salt of 3-hydroxypyridine fumarate synthesized by the authors was a white crystalline substance soluble in alcohol and water – a mixture of 2-ethyl-6-methyl-3-hydroxypyridine and fumaric acid in ethanol. Acute irradiation of the test organism was carried out on the Prometheus proton complex at the А. Tsyb Medical Radiological Research Center (Obninsk, Russia) with a scanning proton beam at a dose of 30 Gy (energy 150 MeV) in a distributed Bragg peak. The survival rate of D. magna was assessed in a 21-day experiment on a daily basis. The cytotoxicity of the studied factors was analyzed by changes in MTT and MDA parameters, the antioxidant properties of 3-hydroxypyridine fumarate were evaluated by changes in the activity of catalase, peroxidase and superoxide dismutase enzymes. The contribution of the analyzed factors to the observed effects was assessed using the Kruskal-Wallis test. Statistical processing of survival was carried out according to the χ2 criterion, and other indicators – according to the Mann-Whitney criterion, adjusted for multiple comparisons. According to the data obtained, the survival rate of irradiated newborn animals decreased by 29.3 % by the age of 21 days (p = 0.03). When combined with 3-hydroxypyridine fumarate action, the death of animals decreased to 44.4 % (p = 8.8 x 104). It was revealed that radiation contributed to the joint effect. An integral assessment of the level of oxidative stress showed that proton irradiation causes a cytotoxic effect in the cells of the test organism. 3-hydroxypyridine fumarate does not have radioprotective and antioxidant effects when D. magna is cultured in a solution of a substance with a concentration of 0.05 micrograms/ml after proton irradiation. The results obtained are consistent with the data on the absence of radioprotective properties of 3-hydroxypyridine fumarate after irradiation with heavy ions. The authors propose a unified mechanism of interaction between 3-hydroxypyridine fumarate and densely ionizing radiation of various types (protons, heavy ions, alpha particles), which does not exhibit radioprotective effects. It is necessary to continue the search for radioprotectors for proton therapy among substances of a different class.
About the Authors
O. V. KuzmichevaRussian Federation
Olga V. Kuzmicheva, Master's Student
Program «Bioinformatics and Data Analysis in Biology and Medicine»
249030; Studgorodok Str., 1; Kaluga region; Obninsk
D. V. Uskalova
Russian Federation
Daria V. Uskalova, Candidate of Biological Sciences, Associate Professor
Department of Biotechnology
Obninsk
D. T. Degtyareva
Russian Federation
Diana T. Degtyareva, Master's Student
Program «Biomedical Research in Radiobiology»
Obninsk
T. V. Ulanova
Russian Federation
Tatyana V. Ulanova, Candidate of Medical Sciences, Head of the Department
Department of Pharmacology
Obninsk
S. V. Shkavrov
Russian Federation
Sergey V. Shkavrov, Candidate of Chemical Sciences, Associate Professor
Department of Biotechnology
Obninsk
E. I. Sarapultseva
Russian Federation
Elena I. Sarapultseva, Doctor of Biological Sciences, Professor
Department of Fundamental Medicine
Moscow
References
1. Kozina YuV, Zukov RA, Slepov EV, Kozina EV. The role of radioprotectors and immunotropes in the prevention of radiation reactions and complications. Effektivnaya farmakoterapiya = Effective Pharmacotherapy. 2021;17(2): 50-57. DOI: 10.33978/2307-3586-2021-17-2-50-57. (In Russian).
2. Voronina TA. Antioxidant Mexidol: Main neuropsychotropic effects and mechanism of action. Psikhofarmakologiya i biologicheskaya narkologiya = Psychopharmacology and Biological Narcology. 2001;1: 2–12. Available from: https://cyberleninka.ru/article/n/antioksidant-meksidol-osnovnye-neyropsihotropnye-effekty-i-mehanizm-deystviya [Accessed November 02, 2024]. (In Russian).
3. Torshin IYu, Gromova OA, Sardaryan IS, Fedotova LE. Comparative chemoreactomic analysis of Mexidol. Zhurnal nevrologii i psikhiatrii im. SS Korsakova = Journal of Neurology and Psychiatry named after SS Korsakov. 2017;117(1): 75–83. DOI: 10.17116/jnevro20171171275-84. (In Russian).
4. Klebanov GI, Lyubitskiy OB, Vasileva OV, Klimov YuV, Penzulaeva OB, Teplyashin AS, et al. Antioxidant properties of 3-hydroxypyridine derivatives: Mexidol, Emoxipin, and Proxipin. Voprosy meditsinskoy khimii = Problems of Medical Chemistry. 2001;47(3): 288–300. Available from: http://pbmc.ibmc.msk.ru/ru/article-ru/PBMC-2001-47-3-288/ [Accessed November 02, 2024]. (In Russian).
5. Zamotaeva MN, Chairkin IN, Inchina VI, Drozdov IA. Experimental substantiation for the use of Mexidol and 3-hydroxypyridine fumarate in chronic myocardial injury. Bulletin of experimental biology and medicine. 2013;155(2): 212-214. DOI: 10.1007/s10517-013-2115-3.
6. Ilica RA, Kloetzer L, Galaction AI, Caşcaval D. Fumaric acid: production and separation. Biotechnology letters. 2019;41(1): 47–57. DOI: 10.1007/s10529-018-2628-y.
7. Volc-Platzer B. Fumaric acid esters for paediatric psoriasis. The British journal of dermatology. 2021;185(1): 5–6. DOI: 10.1111/bjd.20057.
8. Danilina EV, Semenov AV. Synthesis and pharmacological activity study of a new experimental drug – 3-hydroxypyridine fumarate. Vestnik Rossiyskogo gosudarstvennogo meditsinskogo universiteta = Bulletin of the Russian State Medical University. 2006;49(2): 359–362. Available from: https://www.elibrary.ru/item.asp?edn=hukkwf [Accessed November 02, 2024]. (In Russian).
9. Inchina VI, Korshunova AB, Prosvirkina IA, Semenov AV, Ulanova TV, Chairkin IN. Comparative evaluation of some effects of 3-hydroxypyridine and pyrimidine derivatives in an experiment. Vestnik novykh meditsinskikh tekhnologiy = Bulletin of New Medical Technologies. 2010;17(3): 158–160. Available from: https://cyberleninka.ru/article/n/sravnitelnaya-otsenka-nekotoryh-effektov-proizvodnyh-z-oksipiridina-i-pirimidina-v-eksperimente [Accessed November 02, 2024]. (In Russian).
10. Korshunova AB, Inchina VI, Kostychev NA, Prosvirkina IA, Chairkin IN. Neuroprotective activity of some 3-hydroxypyridine and pyrimidine derivatives in global cerebral ischemia in an experiment. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region = Izvestia of Higher Educational Institutions. Volga Region. 2011;2(18): 41–47. Available from: https://cyberleninka.ru/article/n/neyroprotektivnaya-aktivnost-nekotoryh-proizvodnyh-3-oksipiridina-i-pirimidina-pri-globalnoy-ishemii-golovnogo-mozga-v-eksperimente [Accessed November 02, 2024]. (In Russian).
11. Semenova EV, Inchina VI, Semenov AV. Study of antihypoxic activity of new 3-hydroxypyridine derivatives. Zhurnal rossiyskoy assotsiatsii po sportivnoy meditsine i reabilitatsii bol'nykh i invalidov = Journal of the Russian Association for Sports Medicine and Rehabilitation of Patients and Disabled Persons. 2007;22(2): 52-55. (In Russian).
12. Treskunova EV, Sviridonova SV. Study of a 3-oxypyridine derivative on protein formation, pigment, lipid, and enzyme indicators of the liver. Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal = International Research Journal. 2021;5(107). DOI: 10.23670/IRJ.2021.107.5.056. (In Russian).
13. OECD, 2012. Test No. 211: Daphnia magna Reproduction Test, OECD Guidelines for the Testing of Chemicals, Section 2 (OECD Publishing, Paris). Available from: https://www.oecd.org/en/publications/test-no-211-daphnia-magna-reproduction-test_9789264185203-en.html [Accessed November 02, 2024].
14. Semenov AV, Inchina VI, Semenova EV. Patent RU 2365582 C1. IPC C07D213/65 (2006.01). Salt of 2-ethyl-6-methyl-3-hydroxypyridine with fumaric acid possessing metabolic and cardioprotective activity and a method for its production. Published on august 27<sup>th</sup>, 2009. (In Russian).
15. Bushmanov AYu, Sheyno IN, Lipengolts AA, Soloviev AN, Koryakin SN. Prospects for the application of combined technologies in proton therapy of malignant neoplasms. Meditsinskaya radiologiya i radiatsionnaya bezopasnost = Medical Radiology and Radiation Safety. 2019;64(3): 11–18. DOI: 10.12737/article_5cf237bf846b67.57514871. (In Russian).
16. Kuptsova PS, Komarova LN, Vypova ER. Study of radioprotective properties of fumaric acid and fumarate 3-oxypyridine under ionizing radiation on human cells. Radiatsionnaya Gygiena = Radiation Hygiene. 2023;16(1): 32-39. DOI: 10.21514/1998-426X-2023-16-1-32-39. (In Russian).
17. Cancer Cell Culture. Methods and Protocols. Ed. IA Cree. Second ed. Springer New York Dordrecht Heidelberg London: Human Press; 2011: 237−244.
18. Savina NB, Uskalova DV, Sarapultseva EI. Application of the MTT test to study the long-term effects of acute γ-irradiation in crustaceans Daphnia magna. Radiatsiya i risk = Radiation and Risk. 2018;27(1): 86–93. DOI: 10.21870/0131-3878-2018-27-1-86-93. (In Russian).
19. Barata C, Varo I, Navarro JC, Arun S, Porte C. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comparative Biochemistry and Physiology C Toxicology & Pharmacology. 2005;140(2): 175–186. DOI: 10.1016/j.cca.2005.01.013.
20. Jemec A, Tišler T, Erjavec B, Pintar A. Antioxidant responses and whole-organism changes in Daphnia magna acutely and chronically exposed to endocrine disruptor bisphenol A. Ecotoxicology and Environmental Safety. 2012;86: 213–218. DOI: 10.1016/j.ecoenv.2012.09.016.
21. Aebi H. Catalase in vitro. Methods in Enzymology. 1984;105: 121–126. DOI: 10.1016/S0076-6879(84)05016-3.
22. Sirota TV. Use of nitro blue tetrazolium in the autoxidation reaction of adrenaline to determine superoxide dismutase activity. Biomeditsinskaya khimiya = Biomedical Chemistry. 2013;59(4): 399-410. DOI: 10.18097/PBMC20135904399. (In Russian).
23. Szabó ER, Brand M, Hans S, Hideghéty K, Karsch L, Lessmann E, et al. Radiobiological effects and proton RBE determined by wildtype zebrafish embryos. PLoS ONE. 2018;13(11). DOI: 10.1371/journal.pone.0206879.
24. Lee KB, Lee JS, Park JW, Huh TL, Lee YM. Low energy proton beam induces tumor cell apoptosis through reactive oxygen species and activation of caspases. Experimental & molecular medicine. 2008;40: 118-29. DOI: 10.3858/emm.2008.40.1.118.
25. Ulanova TV, Inchina VI, Ruseykin NS, Khudoykina SV, Romanova EV. Study of antitumor activity of fumarate 3-oxypyridine in cell cultures. Vestnik Mordovskogo universiteta = Modern Problems of Science and Education. 2016.26(2): 180-191. DOI: 10.15507/0236-2910.026.201602.180-191. (In Russian).
26. Ulanova TV, Kotlyarov AA, Kakora SA, Shokina SV, Vypova ER, Komarova LN. Study of antitumor activity of fumarate 3-oxypyridine in cell cultures. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2022;6-10. DOI: 10.17513/spno.32253. (In Russian).
27. Usanova AA, Semenova EV, Inchina VI. Influence of 3-hydroxypyridine derivatives on lipid peroxidation processes in experimental acute carbon tetrachloride hepatitis. Rossiyskiy zhurnal gastroenterologii, gepatologii, koloproktologii = Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2009;19(1): 114-118. (In Russian).
28. Shakhmardanova SA, Gulevskaya ON, Khananashvili YaA, Zelenskaya AV, Nefedov DA, Galenko-Yaroshevskiy PA. Succinic and fumaric acid preparations as means of prevention and therapy of various diseases. Zhurnal fundamental'noy meditsiny i biologii = Journal of Fundamental Medicine and Biology. 2016;3: 16-30. Available from: https://cyberleninka.ru/article/n/preparaty-yantarnoy-i-fumarovoy-kislot-kak-sredstva-profilaktiki-i-terapii-razlichnyh-zabolevaniy [Accessed November 02, 2024]. (In Russian).
29. Novikov VE, Kovaleva LA, Losenkova SO, Klimkina EI. Pharmacology of antioxidants based on 3-oxypyridine. Vestnik Smolenskoy gosudarstvennoy meditsinskoy akademii = Bulletin of the Smolensk State Medical Academy. 2004;3. Available from: https://cyberleninka.ru/article/n/farmakologiya-antioksidantov-na-osnove-3-oksipiridina [Accessed November 02, 2024]. (In Russian).
30. Harris KDM, Bartlett NJ, Lloyd VK. Daphnia as emerging epigenetic model organism. Genetics research international. 2012;1: 147892. DOI: 10.1155/2012/147892.
31. Petrosova DT, Uskalova DV, Kuzmicheva OV, Saburov VO, Sarapultseva EI. Enhancement of gold nanoparticles' cytotoxic effect under proton irradiation in in vivo experiments. Meditsinskaya radiologiya i radiatsionnaya bezopasnost = Medical Radiology and Radiation Safety. 2024;69(4): 13-19. DOI: 10.33266/1024-6177-2024-69-4-13-19. (In Russian).
32. Tretyakova MS, Belousov MV, Plotnikov EV. Radioprotection and radiosensitization: a modern view on radiomodulators in pharmacology. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2022;6-2. DOI: 10.17513/spno.32262. (In Russian).
Review
For citations:
Kuzmicheva O.V., Uskalova D.V., Degtyareva D.T., Ulanova T.V., Shkavrov S.V., Sarapultseva E.I. Analysis of the radioprotective properties of 3-hydroxypyridine fumarate on an invertebrate animal model after proton irradiation in vivo. Radiatsionnaya Gygiena = Radiation Hygiene. 2025;18(1):27-37. (In Russ.) https://doi.org/10.21514/1998-426X-2025-18-1-27-37